Estimasi Parameter Regresi Linier Sederhana Menggunakan Prosedur Cochrane-Orcutt, Hildreth-Lu dan First Differences Pada Metode Durbin Watson

Switamy Angnitha Purba(1*), Debora Chrisinta(2), Justin Eduardo Simarmata(3),

(1) Universitas Timor
(2) Universitas Timor
(3) Universitas Timor
(*) Corresponding Author




DOI: https://doi.org/10.35580/jmathcos.v6i2.51177

Abstract


This study aims to examine the problem of autocorrelation, simple regression analysis with errors following the form of first-order autoregressive, Durbin Watson method using the Cochrane-Orcutt, Hildreth-Lu procedures and first differences in overcoming autocorrelation. The occurrence of autocorrelation causes the alleged regression parameter with ordinary least square (OLS) not to produce the actual value. Therefore, to obtain the actual parameters applied Durbin watson method with all three procedures. Based on the data used in this thesis quoted from the book Applied Linear Statistical Models Fifth Edition, the best procedure is given by Hildreth-Lu because it produces the smallest mean square error (MSE) value. This is because, the process of estimating the autocorrelation coefficient is based on iterations until a minimum sum square error (SSE) value is found.


Full Text:

PDF

References


Cessie, S. L., & Houwelingen, J. V. (1992). Ridge estimators in logistic regression. Journal of the Royal Statistical Society Series C: Applied Statistics, 41(1), 191–201.

Fathurahman, M. (2011). Estimasi Parameter Model Regresi Spline. Jurnal Eksponensial, 2(1), 53–58. https://doi.org/10.30864/jsi.v14i2.305

Fernandes, A. A. R. (2022). Metode Analisis Data Penelitian: Pendekatan Regresi. In Jurnal Bumigora Information Technology (BITe) (Issue 2). Universitas Brawijaya Press. https://doi.org/10.30812/bite.v4i2.2104

King, M. L. (1981). The alternative Durbin-Watson test: An assessment of Durbin and Watson’s choice of test statistic. Journal of Econometrics, 17(1), 51–66.

Krämer, W., & Zeisel, H. (1990). Finite sample power of linear regression autocorrelation tests. Journal of Econometrics, 43(3), 363–372. https://doi.org/10.1016/0304-4076(90)90125-D

Kurniawan, R., & Yuniarto, B. (2016). Analisis Regresi: Dasar dan Penerapannya dengan R. In Journal of Mathematics, Computations and Statistics (Issue 2). Prenada Media. https://doi.org/10.35580/jmathcos.v5i2.36956

Kusdarwati, H., Effendi, U., & Handoyo, S. (2022). Analisis Deret Waktu Univariat Linier: Teori dan Terapannya dengan Rstudio. In International Journal of Advanced Computer Science and Applications (Issue 2). Universitas Brawijaya Press.

Mendenhall, W. M., & Sincich, T. L. (2016). Statistics for Engineering and the Sciences. In BAREKENG: Jurnal Ilmu Matematika dan Terapan / (Issue 4). CRC Press.

Mendenhall, W., & McClave, J. T. (1981). A second course in business statistics: Regression analysis. In Seminar Nasional Teknologi Komputer & Sains (SAINTEKS) (Issue 3). San Francisco: Dellen.

Mendenhall, W., Sincich, T., & Boudreau, N. S. (2018). A second course in statistics: regression analysis (Vol. 6). In JURNAL TEKNOLOGI INFORMASI: Teori, Konsep dan Implementasi (Vol. 9, Issue 1). Upper Saddle River, NJ: Prentice Hall.

Miller, S., & Startz, R. (2018). Feasible Generalized Least Squares Using Machine Learning. SSRN 2966194. https://doi.org/10.2139/ssrn.2966194

Nugraha, B. (2022). Pengembangan uji statistik: Implementasi metode regresi linier berganda dengan pertimbangan uji asumsi klasik. In Applied Mathematics and Computation (Issue 9). Pradina Pustaka. https://doi.org/10.1016/j.amc.2012.10.053

Purba, S. A. dan S. J. E. (2021). The Application of Fisher Scoring Algorithm on Parameter Estimation of Normal Distributed Data. Journal of Research in Mathematics Trends and Technology, 3(1), 20–24. https://doi.org/10.32734/jormtt.v3i1.8345

Salam, N., Sukmawaty, Y., & Halida, A. (2022). Estimasi Model Regresi Nonparametrik Dengan Metode B-Spline. Media Bina Ilmiah, 16(10), 7631–7638. https://doi.org/10.33578/mbi.v16i10.15

Setyawan, A., Hadijati, M., & Switrayni, N. W. (2019). Analisis masalah heteroskedastisitas menggunakan generalized least square dalam analisis regresi. Eigen Mathematics Journal, 2(2), 61–72. https://doi.org/10.29303/EMJ.V1I2.43

Simarmata, J. E., Bete, H., & Purba, S. A. (2021). Application of Expectation Maximization Algorithm in Estimating Parameter Values of Maximum Likelihood Model. Journal of Research in Mathematics Trends and Technology (JoRMTT), 3(1), 34–39. https://doi.org/10.32734/jormtt.v3i1.8331

Smadi, A. A., & Abu-Afouna, N. H. (2012). On Least Squares Estimation in a Simple Linear Regression Model with Periodically Correlated Errors: A Cautionary Note. Austrian Journal of Statistics, 41(3), 211–226. https://doi.org/10.17713/ajs.v41i3.175

Sukestiyarno, Y. L., & Agoestanto, A. (2017). Batasan prasyarat uji normalitas dan uji homogenitas pada model regresi linear. Unnes Journal of Mathematics, 6(2), 168–177. https://doi.org/10.15294/UJM.V6I2.11887

Susanti, D. S., Sukmawaty, Y., & Salam, N. (2019). Analisis Regresi dan Korelasi. In TIN: Terapan Informatika Nusantara 2(4) (Issue 2). IRDH. https://doi.org/10.36080/ag.v8i2.1158

Syilfi, S., Ispriyanti, D., & Safitri, D. (2012). Analisis Regresi Linier Piecewise Dua Segmen. Jurnal Gaussian, 1(1), 219–228. https://doi.org/10.14710/j.gauss.1.1.219-228


Article Metrics

Abstract view : 203 times | PDF view : 0 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Journal of Mathematics Computations and Statistics

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Indexed by:

         

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.